Fenton chemistry at aqueous interfaces.
نویسندگان
چکیده
In a fundamental process throughout nature, reduced iron unleashes the oxidative power of hydrogen peroxide into reactive intermediates. However, notwithstanding much work, the mechanism by which Fe(2+) catalyzes H2O2 oxidations and the identity of the participating intermediates remain controversial. Here we report the prompt formation of O=Fe(IV)Cl3(-) and chloride-bridged di-iron O=Fe(IV) · Cl · Fe(II)Cl4(-) and O=Fe(IV) · Cl · Fe(III)Cl5(-) ferryl species, in addition to Fe(III)Cl4(-), on the surface of aqueous FeCl2 microjets exposed to gaseous H2O2 or O3 beams for <50 μs. The unambiguous identification of such species in situ via online electrospray mass spectrometry let us investigate their individual dependences on Fe(2+), H2O2, O3, and H(+) concentrations, and their responses to tert-butanol (an · OH scavenger) and DMSO (an O-atom acceptor) cosolutes. We found that (i) mass spectra are not affected by excess tert-butanol, i.e., the detected species are primary products whose formation does not involve · OH radicals, and (ii) the di-iron ferryls, but not O=Fe(IV)Cl3(-), can be fully quenched by DMSO under present conditions. We infer that interfacial Fe(H2O)n(2+) ions react with H2O2 and O3 >10(3) times faster than Fe(H2O)6(2+) in bulk water via a process that favors inner-sphere two-electron O-atom over outer-sphere one-electron transfers. The higher reactivity of di-iron ferryls vs. O=Fe(IV)Cl3(-) as O-atom donors implicates the electronic coupling of mixed-valence iron centers in the weakening of the Fe(IV)-O bond in poly-iron ferryl species.
منابع مشابه
Efficient Fenton like degradation of Methylene blue in aqueous solution by using Fe3O4 nanoparticles as catalyst
Fe3O4 nanoparticles were prepared hydrothermally and characterized by X-Ray diffraction spectroscopy (XRD), and scanning electron microscopy (SEM). It was found that these nanoparticles can act as an efficient catalyst in the degradation of Methylene blue dye in aqueous solution in a Fenton like system in presence of 30% perhydrol. Uv-Vis spectroscopy was used to determine the concentration of ...
متن کاملMineralization of Ofloxcacin Antibiotic in Aqueous Medium by Electro-Fenton Process using a Carbon Felt Cathode: Influencing Factors
The aim of this work is to study the degradation and mineralization of antibiotic ofloxacin in aqueous medium using the Electro-Fenton method as advanced oxidation technology. In this context, Pt/carbon-felt cell was used to investigate the influence of various parameters including initial pH, different supporting electrolytes, different metal ions as a catalyst and antibiotic concentration ove...
متن کاملEfficiency of Photo-Fenton Process in Degradation of 2-Chlorophenol
Background & Aims of the Study: Phenolic compounds have been extensively used in industries for applications such as petrochemical, oil refineries, papers, plastics, steel, pharmaceuticals, textiles, coal conversion, and so on. Specified amounts of Phenolic compounds are lost in the process of their manufacturing and utilization and often cause environmental pollution problems....
متن کاملOptimized Removal of Sodium Dodecylbenzenesulfonate by Fenton-Like Oxidation Using Response Surface Methodology
This study investigates the degradation of sodium dodecylbenzenesulfonate (SDBS) in aqueous solution by the Fenton-like oxidation process. The effects of different parameters such as concentrations of ferric chloride and hydrogen peroxide, pH and reaction time on the SDBS removal and Chemical Oxygen Demand (COD) reduction were evaluated. Response Surface Methodology (RSM) with Central Compo...
متن کاملEvaluating the Fenton Process Efficiency in Removal of Reactive Red 2 from Aqueous Solution
Introduction: Dyes are visible materials and are considered as one of the hazardous components that make up industrial waste. Therefore it is removed from bodies of water, using various methods. In this regard, the Fenton oxidation process is one of the most effective ways to remove colored contaminants in aquatic environments, which has many applications today. Materials and Methods: In this...
متن کاملApplication of the Electro-Fenton Process Including Fe+2 and Fe+3 Heterogeneous Catalysts to Remove Ciprofloxacin from Aqueous Solutions
Background and Objectives: Ciprofloxacin is an emerging and degradable pollutant that cannot be efficiently removed by common water and wastewater treatment processes. Electro-Fenton process is one of the most effective processes for the treatment of these compounds. Hence, the present study aimed to remove ciprofloxacin by Electro-Fenton method with heterogeneous catalysts, Fe+2 and Fe+3. Mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 2 شماره
صفحات -
تاریخ انتشار 2014